Printed Pages - 5

Roll No. :

320555(20)

B. E. (Fifth Semester) Examination, Nov.-Dec. 2021 (New Scheme)

(Civil Engg. Branch)

NUMERICAL METHODS & COMPUTER PROGRAMMING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all question. Part (a) is compulsory from each question & carry 2 marks. Attempt any two parts from part (b), (c) and (d) from each question & carries 7 marks. Draw suitable diagram.

Unit-I

1. (a) Define keywords & variables in C++?

2

- (b) Give syntax for : (any two)
 - (i) If-else
 - (ii) While

(iii) Do-while

2.

	(iv) For	
	and explain with small example.	7
(c)	Write a C++ program to determine the bending moment in a desired section at a simply supported beam subjected to a UDL.	7
(d)	What is switch case statement? Write a program in	
	C++ to program addition, substraction, multiplication	
	& division using switch case.	
	Westmann thurs : 80	
	Unit-II	
	What do you mean by array?	2
(b)	Write a program in array to perform addition of two	
	matrices.	7
(c)	Differentiate between call by value & call by	7
	reference, giving suitable examples of each.	7

$$y = \frac{5^{f}WL^4}{384 EI}$$

take the values of W, L, E & I through the keyword. 7

Unit-III

- (a) What is graphics Initialization?(b) Explain the purposs of the following functions with syntax (any two):
 - (i) rectangle ()
 - (ii) circle ()
 - (iii) line ()
 - (c) Write a graphics program to draw the cross section of a singling reinforced beam of rectangular cross section.
 - (d) Write a graphics programme in C++ to draw concentric circles. Take input by user.

Unit-IV

4. (a) Write the normal equation of the curve $y = ae^{bx}$.

7

(d) Write a program to calculate deflection 'y' using function where,

(b) Solve by Gauss Jordan Method:

$$2x-3y+z=-1$$

$$-x+4y+5z=25$$

$$3x-4y+z=2$$

(c) Growth of bacteria (N) in a culture after 't' has is given in the following table:

Fit a curve of the from N = ab' and estimate N when t = 7

(d) Solve the equation by Gauss-Elimination method: 7

$$3x + 2y - 2z = -2$$

1, 1

which if
$$x - \hat{y} + \mathbf{z} = \mathbf{6}$$
 where one wides a solution in

THE PARTY OF THE SHADE OF THE PARTY OF THE P

Unit-V

- 5. (a) What do you mean by central differences?
 - (b) Apply Runge-Kutta method to find an approximate

value of y when x = 0.2

$$\frac{dy}{dx} = x + y & y(0) = 1$$

(c) Given that

$$\frac{dy}{dx} = x^2 (1+y), y(1) = 1, y(1\cdot 1) = 1\cdot 233,$$

$$y(1\cdot 2) = 1\cdot 548, y(1\cdot 3) = 1\cdot 979,$$
evaluate $y(1\cdot 4)$ by Milne's Method.

320555(20)

- (d) Evaluate: (any two)
 - (i) $\Delta \tan^{-1} x$

7

(ii)
$$\Delta \left(\frac{x^2}{\cos 2x} \right)$$

(iii)
$$\Delta(e^x \log 2x)$$

320555(20)

100]